

LINEAR MODULES

SUMMARY

PAGE 4 – 7 1.0 THE NADELLA COMPANY

PAGE 6 – 13 2.0 BASIC-LINE AXNP-S

- Actuator with ball screw drive and rail guide
- PAGE 14 19 3.0 DRIVE ADAPTION / REFERENCE SWITCH
- PAGE 20 25 4.0 FASTENING AND JOINING ELEMENTS
- PAGE 26 34 8.0 GENERAL INFORMATION
 - Actuator selection
 - Technical information
 - Calculation
 - Type designation
 - Application form

THE SPECIALIST FOR MOTION TECHNOLOGY

NADELLA has developed over time from a supplier of rolling bearings, linear guide components and linear axes into an expert system partner for all areas of motion technology. Wherever innovative ideas, precision and reliability are required, developers and design engineers rely on products from NADELLA. Our customers now include renowned mechanical engineering, plant construction and automation engineering companies in Germany, Europe, Asia and the USA.

FULL SERVICE AND JUST IN TIME

We consider ourselves to be a full-service partner – from development of a product through production and all the way to logistics. Our established network guarantees efficient processes in all areas and throughout the value-added chain – all from a single source. Additionally, express deliveries or fast and inexpensive special treatment of catalogue parts is also possible. This also applies to small and medium quantities.

EXPERIENCE AND KNOW-HOW

Professional operations and application consultation are just a few of our distinguishing characteristics: Our consulting engineers collaborate closely with our customers' experts, actively contributing their specialist expertise, their experience and the technical possibilities. This results in custom solutions that set standards.

MAXIMUM QUALITY AND CERTIFIED ENVIRONMENTAL MANAGEMENT

Maximum quality is our top priority. That is why every process step is accompanied and regularly checked by expert employees. All companies and plants are certified according to DIN EN ISO 9001 or ISO/TS 16949, and their environmental management systems comply with DIN EN ISO 14001. We also have the latest measuring and testing equipment at our disposal to ensure that our high quality standards are met over the long term.

- CAQ system
- 3-D CNC measuring machines
- Force testing
- Radiographic inspection
- Microsection analysis
- Materials testing on metal and plastic

BASIC-LINE AXNP-S

PAGE 8 – 9	2.1	PRODUCT DESCRIPTION Setting, performances, characteristics, applications and combination examples
PAGE 10 – 11	2.2	AXNP 45-S Linear module with spindle drive • Rail guide • Single or double carriage
PAGE 12 – 13	2.3	 AXNP 65-S Linear module with spindle drive Rail guide Single or double carriage

BASIC-LINE AXNP-S PRODUCT DESCRIPTION

The model range AXNP-S is a further development of our approved AXN/AXNP-Z series with toothed belt drive. The modules have been developed especially for handling and positioning, primarily for precise positioning and vertical applications. If individual module or multiple axis system - various combinations are possible.

DIRT PROTECTION

On the upper side the actuator is completely covered by a cover band which is clipped in the profile so that it prevents dirt particles from penetrating into the module. Wiper brushes integrated in the table plate as well as an overlapping of the table plate over the main profile minimize the gap additionally.

MOTOR CONNECTION

A motor can be mounted through a flange / coupling combination which is availabe for many motor types. If technically possible also special motors can be connected.

RAIL GUIDE

The AXNP-S series is equipped with high-quality ball rail systems. The advantages of these rail guides are long service life, low noise level, high guidance accuracy and high load values. For statically cycling of the guide systems the dynamic load rating is decisive for the dimensioning of the guide systems.

2.1

FIXATION OF THE ACTUATOR AND ATTACHEMENTS

By end-to-end slots at the bottom and on either side of the acutator profile a universal installation of the module is possible. Slot nuts that can be swivelled in, fastening strips and connecting plates increase the mounting flexibility. Attachments can simply be screwed through threads in the table plate. Alternatively the Basic-Line can be extended by an additional, non-driven carriage.

SCREW DRIVE

We use standard highly precise whirled ball screw drives. Due to the hard whirling technology a better surface quality can be reached compared to ground spindles. The spindles we use are in the accuracy range of 23 μ m/300 mm (IT5). To support the ball screw drive in case of larger strokes optionally spindle supports are available which prevent oscillations and thus allow higher speeds.

LUBRICATION

· manager

The bearings of the linear actuators are lubricated for life. The ball rail system and the ball screw drive can be re-lubricated through separate lubricating nipples at the carriage that are accessible from the outside. Especially in case of a high running performance and/or high acceleration values this is an advantage. For short-stroke use, strokes $\leq \frac{1}{2}$ length of carriage, please contact our Technical support. We recommend the lubricant Klüber Microlube GL261.

BASIC-LINE AXNP-S AXNP 45-S

Linear actuator with ball screw drive and rail guide.

Stroke calculation: effective stroke + safety overrun SA = number of spindle support sets For motor connection see chapter drive adaption Lubrication: S = ball screw; F = rail guide

LOADS AND LOAD MOMENTS*

	Rail guide B 9				
Loads (N)	dyn.	stat.			
P _R	660	910			
PL	660	910			
P _T	660	910			
Load moments (Nm)					
M _x	5	6			
M _y	20	25			
M _z	20	25			

* The dynamic load of the guide system is based on a nominal lifetime of 54000 km

TECHNICAL DATA

Max. speed	1 m/s
Repeating accuracy	± 0.03 mm
Actuation	Ball screw Ø 12 mm
Max. dynamic working load	3600 N
Pitch	5/10 mm
Idle-running torque	0.4 Nm
Moment of inertia	0.11 kgcm ² /m
Max. length overall	2 m
Geometrical moment of inertia Iy	20.3 cm ⁴
Geometrical moment of inertia Iz	21.7 cm ⁴

MASS

	Rail guide B 9
Basic mass	1.6 kg
Mass per 100 mm stroke	0.4 kg
Slide mass	0.45 kg

SA = 1 set of spindle support

BASIC-LINE AXNP-S AXNP 65-S

Linear actuator with ball screw drive and rail guide.

Stroke calculation: effective stroke + safety overrun SA = number of spindle support sets For motor connection see chapter drive adaption Lubrication: S = ball screw; F = rail guide

2.3

LOADS AND LOAD MOMENTS*

	Rail guide B 15	
Loads (N)	dyn.	stat.
P _R	1400	3900
PL	1400	3900
P _T	1400	3900
Load moments (Nm)		
M _x	10	30
My	65	185
M _z	65	185

* The dynamic load of the guide system is based on a nominal lifetime of 54000 km

TECHNICAL DATA

Max. speed	1.6 m/s
Repeating accuracy	± 0.03 mm
Actuation	Ball screw Ø 16 mm
Max. dynamic working load	6500 – 12000 N
Pitch	5/10/16 mm
Idle-running torque	0.5 Nm
Moment of inertia	0.33 kgcm²/m
Max. length overall	3 m
Geometrical moment of inertia $I_{\rm Y}$	76.3 cm ⁴
Geometrical moment of inertia Iz	87.3 cm ⁴

MASS

	Rail guide B 15
Basic mass	4.6 kg
Mass per 100 mm stroke	0.8 kg
Slide mass	1.4 kg

SA = 1 set of spindle support

DRIVE ADAPTION / REFERENCE SWITCH

PAGE 16

3.1 GEAR / MOTOR ADAPTION WITH COUPLING

PAGE 17 – 18

3.2 INDUCTIVE END / REFERENCE SWITCH

Inductive switches

DRIVE ADAPTION GEAR / MOTOR ADAPTION WITH COUPLING

Gear / motor adaption through standardized mounting combinations with coupling, coupling bell and adapter flange.

AXNP-S

Example Order Code AXNP45-S **MK**-B-100-326-00

AXNP-S

Actuator	Code	Design	е	α	S	b	d	i	К	L
			min. – max.			min. – max.	min. – max.	max.	max.	
AXNP 45-S	1	B5	44 - 53	0°	4 x M5 x 12	35 – 45	4 - 16	34	60	60
	П	B5	50 - 70	45°	4 x M5 x 12	35 – 58	4 - 16	34	60	60
		B14	54 - 70	45°	4 x Ø 5.5	35 – 58	4 - 16	34	60	60
AXNP 65-S	I	B5	55 – 95	0°	4 x M6 x 15	48 - 85	8 – 25	40	105	90
	П	B5	60 - 120	45°	4 x M6 x 15	48 - 100	8 – 25	40	105	90
	III	B14	66 – 95	0°	4 x Ø 6.6	48 - 85	8 – 25	40	105	90
	IV	B14	66 - 120	45°	4 x Ø 6.6	48 - 100	8 – 25	40	105	90

END / REFERENCE SWITCH INDUCTIVE SWITCHES

As an alternative to mechanical switches inductive switches make it possible to monitor positions or to control the end position. They are supplied as set consisting of two switches, lug, fastening units or single initiator. Depending on the application you can order NCC or NOC, break or make contacts. The plug-in connecting lines of the inductive switches are very easy to maintain.

	Switch	Mounting dimensions (mm)					
	Туре	А	D				
AXNP 45-S	i5	9	29	9	_		
AXNP 65-S	i4	16	27	19	11		

¹⁾ Ca. values depending on switch position without cable connection

TECHNICAL DATA

	Connected voltage	max. load current	Switching precision	Cable length ²⁾	Protection class
Switch i4 NPN / PNP ³⁾ opening / closing contact AXNP 65-S	10 30 V DC	200 mA	\leq 10 % of sensing distance	5 m	IP 67
Switch i5 NPN / PNP ³⁾ opening / closing contact AXNP 45-S	10 30 V DC	100 mA	\leq 10 % of sensing distance	3 m	IP 67
Switch i6 (integrated in slot nut) PNP opening contact AXNP 65-S	10 30 V DC	100 mA	<pre></pre>	2 m	IP 67

²⁾ Longer cable length on request (please indicate desired cable length in the order) ³⁾ NPN / PNP-NC (normally open) or NPN / PNP-NO (normally closed)

Example Order Code

2pcs. limit witch limit switch NC (normally open), switch cam, fastening elements i4-NC set complete

1 limit switch NO (normally closed), fastening elements i4-NO set single

FASTENING AND JOINING ELEMENTS

PAGE 22 4.1 SLOT N

- PAGE 23 4.2 FASTENING SHOULDER
- PAGE 24 4.3 CROSS CONNECTION
- PAGE 25 4.4 COVERS

FASTENING AND JOINING ELEMENTS SLOT NUTS

TYPE E (SWIVEL-MOUNTED)

- Standard slot nut
- Can be swivelled in any position
- Fixed by spring ball
- Steel zinc coated

TYPE S (NOT SWIVELLING)

- Slot nut for heavy loads
- Slide-in at end of profile
- Fixation with elastic balls (up to nut slot 8.2)
- Steel zinc coated

TYPE T (DIN – SLOT NUT, NOT SWIVELLING)

- Slot nut for heavy loads
- Installed on demand
- Steel black finished
- Without fixing

Actuator	Nut slot-	S	Design	L (mm)	L1 ¹⁾ (mm)	TA (Nm)	max. tensile force (N)
AXNP 45-S	5 St-	M3 M4 M5	E/S	12	3 4 4	1.5	500
AXNP 65-S	6 St-	M4 M5 M6	E/S	17	5 5 5.5	4	1750

¹⁾ Max. values, different dimensions possible

²⁾ Strength category 10.9 is necessary by using the max. clamping torque

All combinations of actuators and nut slots in the dimension field are possible - Order Example: AXN 65-Z 6St M5 E

4.2

FASTENING SHOULDER

Easy fixation of actuator by top-side screw connection. For module combinations with fastening shoulder please see chapter ",direct connection".

Actuator		a1	a2	b	С	d1	D1	e1	d2	D2	e2	f	g ¹⁾	h
AXNP 45-S	Bfl. Bk4 ²⁾ Bfl. B44	60	_	- 28	20 41	5.5	10	5	_	_	_	11	68	74
AXNP 65-S	Bfl. B64 Bfl. Bk6 ²⁾ Bfl. B66	80	_	28 - 40	41 20 60	5.5	10	11	_	_	_	17	95	97

¹⁾ For drive belt actuators also depending on drive adapter

²⁾ Short execution with one countersink

Order Example: AXN 65-Bfl. B64

CROSS CONNECTION AXNP-S/AXNP-S

Cross connections by standardized adapter plates for Y-Z axis connections.

Carriage of Z-axis will be connected to the carriage of Y-axis via adapter plate. Advantage: the complete Z-axis profile can be moved.

CROSS CONNECTION SET

$\overline{}$		Z-axis	
		AXNP 45-S	AXNP 65-S
	AXNP 45-S	SK44	SK64
	AXNP 65-S	SK64	SK66

BALL SCREW / BALL SCREW

Y-axis	Z-axis	Ly (mm)	Lz (mm)	R (mm)	T (mm)	α (°)	Cross connection set
AXNP 45-S	AXNP 45-S	155	155	43	12	45	SK44
AXNP 45-S	AXNP 65-S	240	155	64	12	60	SK64
AXNP 65-S	AXNP 65-S	240	240	64	12	45	SK66
AXNP 65-S	AXNP 80-S	280	240	78	15	50	SK86

Example Order Code SK66

Centre of actuator = centre of carriage plate Adjustment using cylinder pins or stop angle

COVERS COVER FOR PROFILE SLOTS AXNP-S

For any application used in visual range or with increasing dirt, the profile slots can be covered by corresponding covers in aluminium or plastic material. Therefore no dirt particles can enter the t-slots which guarantees good dirt protection for the actuator.

COVER PROFILE AL Colour: silver-coloured

COVER PROFILE PP Colour: black

Modul type	Size	Designation	Material
AXNP 45-S	Nut 5	Cover profile 5 PP	Polypropylene black
AXNP 65-S	Nut 6	Cover profile 6 Al Cover profile 6 PP	Silver-coloured Polypropylene black

Example Order Code
profile 8PP

TECHNICAL INFORMATION

- PAGE 28 29 5.1 ACTUATOR SELECTION
- PAGE 30 31 5.2 CALCULATION BASIS
- PAGE 32 5.3 ORDERING CODE
- PAGE 33 34 5.4 APPLICATION FORM

TECHNICAL INFORMATION ACTUATOR SELECTION

DRIVE – TOOTHED BELT DRIVE Z OR SPINDLE DRIVE S

Application	horizontal vertical	-Z -S
Travel length	short* medium* long*	-S -S or -Z -Z
Travel speed	low* medium* high*	-S -S or -Z -Z
Precision	low* high*	-Z -S

GUIDE SELECTION – ROLLER GUIDE LR OR RAIL GUIDE B

Application	horizontal	-LR or -B
	vertical	-LR or -B
Mass	low to medium*	-LR or -B
	medium to high*	-B or parallel guide
Overhanging mass or transverse moment		-B or parallel guide
Dynamic	low to medium*	-LR or -B
	medium to high*	-B

CARRIAGE SIZE - SINGLE / TWIN CARRIAGE OR LONG CARRIAGE

MASS

The mass to be moved should be well fastened on the carriage and not have large overhangs. The centre of gravity of the mass should be approximately in the middle of the carriage mounting surface. Alternatives for longer screw-on surfaces are long standard carriages or double carriages which can also be fitted with larger distances.

OVERHANGING OR WIDE MASSES

If the mass to be moved is very wide or has an overhanging centre of gravity it is recommended to use two parallel actuator units (maybe driven by a connecting shaft).

* The specifications short, medium, long or low, medium, high are to be understood in the ratio 1/3, 2/3 and 3/3 of the technical performance data indicated in the catalogue for respective actuator types and sizes.

ACTUATOR SIZE AND TYPE

The actuator size is mainly determined by the mass to be moved (weight and volume). This mass should be easy to mount and therefore should have a certain guide size and carriage mounting surface which also is decisive for the actuator size (see product overview in the catalogue).

The second selection criteria for the actuator is the moving dynamic of the mass. The resulting forces (e.g. driving forces, moments, centrifugal forces, etc.) must be absorbed by the toothed belt and by the guide. Based on the synoptical table in the catalogue possible actuator types and sizes can be specified.

To make the right choice the technical data indicated in the catalogue such as admissible loads and load moments should only be used by one third as the combination of forces and moments can significantly affect the lifetime.

Further selection criteria for the actuator type are space requirements and the travel length of the linear actuator. It may be recommendable to replace larger single actuators by smaller parallel actuators and vice-versa. In case of large effective strokes, it may be necessary to use large actuators also for small loads.

The above are only rough guidelines for the selection of an actuator which can also be completely different depending on the application and the existing realities or on the customer's personal wishes.

In case of combined actuators such as X-Y systems or X-Y-Z systems a gantry structure with two parallel basic actuators should always be given preference to a boom system with only one basic actuator. For the design of combined systems the actuator on which the mass to be moved will be mounted should always be viewed at first.

We shall be pleased to assist you with the design and selection of the right modules for your application. Please send us information about your application and technical data. (See also application form at the end of the catalogue)

TECHNICAL INFORMATION CALCULATION BASIS

GENERAL

All data refer to the respective standard type of the linear module. A special design or temperatures above 80 °C can considerably affect these values.

TECHNICAL DATA, LOADS AND LOAD MOMENTS

The values indicated are maximum possible individual sizes. Combined loads (e.g. forces and moments from different directions) reduce these maximum values and can have a negative effect on precision. If linear actuators are not fully supported, in addition a deflection or torsion test may become necessary.

REPEAT ACCURACY

The repeat accuracy defines that under the same conditions within the given tolerances the mechanical linear module will reach again a position already approached before.

STROKE LENGTH

The stroke length indicated in the order code corresponds to the maximum possible travel distance. Accelerating and stopping distances or a possible safety overflow must be taken into consideration for design.

SPEEDS

The theoretical travel speed results from the screw pitch or in case of a toothed belt actuator from the stroke per turn of the pinion, the gear ratio of a possible gear and a motor speed. To determine the actually possible travel speed the specific conditions, the mass to be moved, acceleration, motor output and the admissible drive torque of the selected actuator as well as the efficiency have to be considered.

OPERATING CHARACTERISTICS AND PRODUCTION TOLERANCES

Differences in running performance and noise development with identical units cannot be completely excluded, not even by our high production standard with small production tolerances. Our extruded profiles are manufactured according to DIN EN 12020-2. Especially with reference to straightness and torsion these fixed tolerances mostly are clearly underrun. The exact adjustment of the linear units and / or mounting to precisely machined surfaces increase the guiding accuracy. A possible deflection of partially supported actuators mainly depends on the inherent rigidity, the load, the self-supporting length and the rigidity of the adjacent construction.

5.2

DRIVE – TOOTHED BELT DRIVE Z OR SPINDLE DRIVE S

$F_{\chi} = m \cdot a$		
$F_{Y} = m \cdot a$		
$F_{Z} = m \cdot (g + a)$		
Additional moment loading with an eccentric	centre of gravity or lever arm	
$M_{X} = F_{Y} \cdot I_{Z} \text{ or } F_{Z} \cdot I_{Y}$		
$M_Y = F_X \cdot I_Z \text{ or } F_Z \cdot I_X$		
$M_Z = F_X \cdot I_Y \text{ or } F_Y \cdot I_X$		
F = Load (N) m = Mass (kg)	a = Acceleration (m/sec²) g = acceleration of gravity (9.81 m/sec²)	lx, ly, lz = Distance of force application point in direction x, y, z, indicated in m

In most applications there are force combinations. The resulting total forces always must be smaller than the respective admissible values.

DRIVE SIZING (ESTIMATE)

$M_A = M_{Last} + M_{Leer}$		
For toothed drive		
$M_{Last} = \frac{F_X \cdot p}{2 \cdot \pi \cdot 1000}$		
For screw drive		
$M_{Last} = \frac{F_X \cdot p}{2 \cdot \pi \cdot \cdot 1000}$		
$M_A = Necessary drive torque (Nm)$ $M_{Last} = Load torque (Nm)$ $M_{Lear} = Idle torque (Nm) - see data sheets$	$F_X =$ Feed force (N) p = Stroke / revolution (mm) for toothed drive belt screw pitch (mm) for screw drive	= For ball screw approx. 0.9

FEED FORCE FOR HORIZONTAL OPERATION

 $F_{X} = m \cdot g \cdot \mu + m \cdot a$

 $\mu=\textit{Friction}\ \textit{coefficient}\ \textit{for}\ \textit{rail}\ \textit{guide}\ 0.02\ \textit{for}\ \textit{roller}\ \textit{guide}\ 0.05$

FEED FORCE FOR VERTICAL OPERATION

 $F_x = m \cdot (g + a)$

ADMISSIBLE DRIVE TORQUES

The maximum acceleration also depends on the maximum admissible drive torque of the respective actuator. Example: calculation for toothed belt actuator AXN80-Z:

 $M_{Azul} = belt \ traction \ \cdot \ pinion \ radius = \frac{1450N \cdot 180 \ mm}{2 \cdot \pi \cdot 1000} = 41.5 \ Nm$

TECHNICAL INFORMATION ODERING CODE

CODES FOR AXN

ORDERING EXAMPLE

AXN 65 - S HW 14 - LR 35 - 1000 - 1340 - 00	
Type designation AXN AXNP	OptionsThis number will be given byNADELLA. It shows special marksor special design which are notedin clear text.00No options01Spindle support 1SA02Spindle support 2SA03Spindle support 3SA04Spindle support 4SA10Cover band12Slot covers13Covering plate22Twin carriage23Long carriage32Reinforced spindle bearing
Drive configuration With belt drive HW: Hollow shaft WL (WR): Driveshaft left (right) WD: Driveshaft both sides KL (KR): Partially integrated coupling on one side left (right) PL (PR): Planetary gear left (right) (please refer page "direct gearbox connection" for gearbox type) PLK (PR) = 0: Without gearbox PLE MKL (MKR):	 33 Double spindle nut 34 Preloaded spindle nut 35 With caged ball technology 66 Pulleys syncronized two modules 76 Exterior parts corrosion resistant 77 Stainless version (NX) 88 Profile with junction 99 According to drawing More than one option possible Overall length (Stroke + length surcharge according to data given in this catalogue)
With spindle drive W: Free drive shaft MK: Motor flange with coupling	Stroke
Characteristic of the shaft / coupling With belt drive • Diameter of shaft or hollow shaft (HW, WL, WR, WD) • Diameter of coupling holes (KL,KR, MKL, MKR) • Gear ratio (PL, PR) • For type PLK or PRK only the gear ratio is indicated	Size of guide system Subject to catalogue Reference variable
With spindle drive Spindle diameter and pitch	 Ball circulating guide according to DIN 645

INFORMATION

When ordering a version with motor adaptation, please always include the dimension sheets of the motor or gear unit to be mounted.

APPLICATION FORM PART 1

	Date
Company	Phone
Contact	Fax
Street	eMail
Address	Project designation

APPLICATION PARAMETER

Coordinate	Х	Y	Z
Single axis / parallel axis (distance in mm)			
Installation position: horizontal (hor); vertikal (ver) or wall fastening (wa)			
Stroke (mm)			
Effective stroke $\leq \frac{1}{2}$ carriage length	Yes	No	
Speed v (m/s)			
Acceleration a (m/s ²)			
Traverse time (s)			
Cycle time (s)			
Repeating accuracy (± mm)			
Required lifetime (h)			
Actual load (kg)			
External loads (N)			
Center coordinate load X (mm)			
Center coordinate load Y (mm)			
Center coordinate load Z (mm)			
Center coordinate force X (mm)			
Center coordinate force Y (mm)			
Center coordinate force Z (mm)			

INFORMATION

For higher loads or charges please send your drawing attached.

APPLICATION FORM PART 2

Conditions of use (dust, splash water, abrasive media)

Corrosion resistance

Drive adaption for existing gear

 FITINGS LEFT
 FITINGS RIGHT

 Image: Constraint of the state of the sta

ATTACHMENTS

Connecting shaft for distance (mm) (please indicate distance of actuators)		
Planetary gear (Type: ratio) (e.g.: PLE80:8)	Pieces	Туре
Inductive switch (opening / closing contact)	Pieces	Туре
Slot nuts	Pieces	Туре
Fastening shoulder	Pieces	Туре
Cover profile (2m length)	Pieces	Туре
Cover plate	Yes	No
Corrosion resistant version	Yes	No

